Glossary

  • Active Learning

    Active learning is a semi-supervised machine learning technique where the learning algorithm actively queries the user or an oracle for labels on the most informative instances in the dataset. The … read more...

  • AdaBoost

    AdaBoost, short for Adaptive Boosting, is a popular ensemble learning algorithm that combines the outputs of multiple weak classifiers to produce a strong classifier. It works by iteratively training … read more...

  • Adversarial Examples

    Adversarial examples are input instances that have been intentionally perturbed to cause a machine learning model to misclassify them. These perturbations are often imperceptible to humans but can … read more...

  • Adversarial Training

    Adversarial training is a technique used to improve the robustness of machine learning models, particularly deep learning models, against adversarial examples. It involves augmenting the training set … read more...

  • Affective Computing

    Affective computing is a multidisciplinary field that involves the study and development of systems that can recognize, interpret, and simulate human emotions and affective states. It aims to bridge … read more...

  • Algorithm

    An algorithm is a step-by-step procedure or set of instructions for solving a specific problem or performing a certain task. They form the foundation of many computer programs and are essential for … read more...

  • AlphaFold

    AlphaFold is a groundbreaking deep learning algorithm developed by DeepMind for predicting protein structures with high accuracy. It has demonstrated remarkable performance in the Critical Assessment … read more...

  • Amazon Redshift

    Amazon Redshift is a fully managed, petabyte-scale data warehouse service in the cloud provided by Amazon Web Services (AWS). Redshift allows you to run complex analytic queries against large datasets … read more...

  • Anomaly Detection

    Anomaly detection is the process of identifying rare or unusual data points, events, or observations that deviate from the expected patterns in a dataset read more...

  • Apache Hadoop

    Hadoop is an open-source software framework that is used for distributed storage and processing of large datasets. It is designed to handle data that is too big to fit on a single computer and can be … read more...

  • Apache Hive

    Apache Hive is an open-source data warehouse system built on top of Apache Hadoop for querying and analyzing large datasets stored in Hadoop distributed file system (HDFS) or other compatible storage … read more...

  • Apache Pig

    Apache Pig is a high-level platform for processing and analyzing large datasets using the Hadoop framework. It provides an abstraction over Hadoop MapReduce programming model, allowing users to write … read more...

  • Apache Spark

    Apache Spark is an emerging de facto platform and trade language for big data analytics. It has a high computing power and a set of libraries for parallel big data processing on compute clusters. It … read more...

  • ARIMA (Autoregressive Integrated Moving Average)

    ARIMA, which stands for Autoregressive Integrated Moving Average, is a widely-used time series forecasting model in statistics and econometrics. It is designed to predict future values of a time … read more...

  • Artificial Intelligence

    The word Artificial means something that is not natural. Human beings are able to perform tasks that are higher-level mental processes such as perceptual learning, memory organisation and critical … read more...

  • Association Rule Learning

    Association rule learning is a machine learning technique that discovers the relationships between variables in a dataset. It is commonly used in market basket analysis to identify patterns in … read more...

  • Attention Mechanism

    Attention Mechanism is a technique used in deep learning models, particularly in natural language processing and computer vision, to selectively focus on specific parts of the input data when … read more...

  • Auto-regressive models

    Auto-regressive models are a class of generative models that predict the probability distribution of a sequence of tokens by conditioning each token's probability distribution on the tokens that … read more...

  • Autoencoders

    Autoencoders are a type of neural network that can learn to compress and reconstruct data. Autoencoders consist of an encoder network that transforms the input data into a latent representation and a … read more...

  • AWS (Amazon Web Services)

    Amazon Web Services (AWS) is a comprehensive, evolving cloud computing platform provided by Amazon. AWS offers a wide range of cloud-based services, including computing power, storage, databases, … read more...

  • AWS SageMaker

    AWS SageMaker is a managed service provided by Amazon Web Services (AWS) that allows data scientists and developers to build, train, and deploy machine learning models quickly and efficiently. It … read more...

  • Back-Translation

    Back-Translation is a technique used in natural language processing and machine translation to improve the quality and fluency of translated text. It involves translating a text from the source … read more...

  • Bagging

    Bagging, or Bootstrap Aggregating, is an ensemble learning technique used in machine learning to improve the stability and accuracy of prediction models. It involves generating multiple training … read more...

  • Bayesian Networks

    Bayesian Networks, also known as Bayes Nets or Belief Networks, are probabilistic graphical models that represent a set of variables and their conditional dependencies using a directed acyclic graph … read more...

  • Bayesian Optimization

    Bayesian Optimization is a global optimization technique for expensive black-box functions that uses Bayesian models to approximate the objective function. It is particularly useful for optimizing … read more...

  • BERT

    BERT (Bidirectional Encoder Representations from Transformers) is a state-of-the-art natural language processing model developed by researchers at Google. It is highly effective for various NLP tasks, … read more...

  • BERTology

    BERTology is the study and analysis of BERT (Bidirectional Encoder Representations from Transformers) and BERT-based models in natural language processing (NLP). BERT has been a groundbreaking model … read more...

  • Bias and Variance

    Bias and variance are two fundamental concepts in machine learning and statistics that describe the sources of error in predictive models read more...

  • Bidirectional LSTM

    A Bidirectional LSTM (Long Short-Term Memory) is a type of recurrent neural network (RNN) architecture that consists of two separate LSTMs, one processing the input sequence in the forward direction … read more...

  • Big Data Analytics

    Big data analytics refers to the process of collecting, processing, analyzing, and extracting valuable insights from large and complex datasets using various techniques, tools, and algorithms. It … read more...

  • Big Data Analytics

    Big data analytics is the process of extracting meaningful insights, and VALUE from data. read more...

  • Bioinformatics

    Bioinformatics is a field formed from the integration of mathematical, statistical and computational methods to analyze biological information, including genes and their products, whole organisms, or … read more...

  • BLEU Score

    The BLEU (Bilingual Evaluation Understudy) Score is an evaluation metric for machine translation that measures the quality of translated text by comparing it to human-translated reference texts. Byte … read more...

  • CapsNet

    CapsNet, short for Capsule Network, is a type of neural network architecture designed to address some of the limitations of traditional convolutional neural networks (CNNs). CapsNet introduces the … read more...

  • CatBoost

    CatBoost is a machine learning algorithm for gradient boosting on decision trees. It is designed to handle categorical features in the data, which is a common challenge in many real-world datasets. … read more...

  • Character-based Language Models

    Character-based language models generate text one character at a time, as opposed to word-based models, which generate text one word at a time. They have the advantage of handling out-of-vocabulary … read more...

  • ChatGPT

    ChatGPT is a large language model chatbot developed by OpenAI. It is capable of carrying on conversations with humans in a natural and engaging way, answering questions, providing summaries, … read more...

  • Chi-squared Test

    The Chi-squared test is a statistical hypothesis test used to determine whether there is a significant association between two categorical variables in a sample. It is based on comparing the observed … read more...

  • Clickstream Analysis

    Clickstream analysis is the process of collecting, analyzing, and visualizing the sequence of clicks or user interactions on a website or application. It helps businesses gain insights into user … read more...

  • Cloud Jupyter

    Cloud Jupyter is a web-based platform that allows users to create, share, and run Jupyter Notebooks in the cloud. Cloud Jupyter platforms, such as Google Colab, Microsoft Azure Notebooks, and IBM … read more...

  • Cloud Notebook

    A Cloud Notebook is a web-based interactive computing environment, similar to Jupyter Notebooks, that allows users to create, edit, and run documents containing live code, equations, visualizations, … read more...

  • Clustering

    Clustering is a machine learning technique that involves grouping similar data points together based on their characteristics or features. Clustering can be used for a variety of applications such as … read more...

  • CodeBERT

    CodeBERT is a pre-trained language model for programming languages, developed by Microsoft Research. It is useful for tasks such as code summarization, code translation, and code completion. CodeBERT … read more...

  • Cohort Analysis

    Cohort Analysis is a type of analytical method used to study the behavior of groups or cohorts of users over time. It involves segmenting users into cohorts based on a shared characteristic, such as … read more...

  • Collaborative Filtering

    Collaborative Filtering is a widely-used technique in recommendation systems that leverages the past behavior, preferences, or opinions of users to generate personalized recommendations. It is based … read more...

  • Collinearity in Regression Analysis

    Collinearity is a statistical phenomenon in which two or more predictor variables in a multiple regression model are highly correlated. When collinearity is present, it can cause problems in the … read more...

  • Computer Vision

    Computer vision is a field of artificial intelligence and computer science that focuses on enabling computers to interpret and understand visual information from the world around them. It involves … read more...

  • Confusion Matrix

    A confusion matrix is a table that summarizes the performance of a machine learning model by comparing its predicted output with the actual output. A confusion matrix shows the number of true … read more...

  • Content-Based Filtering

    Content-Based Filtering is a recommendation technique that recommends items to users based on their preferences and past behavior. It works by analyzing the content of the items themselves and … read more...

  • Context Vectors

    Context Vectors (CoVe) are word representations generated by a pre-trained deep learning model for machine translation. CoVe aims to capture both semantic and syntactic information from the input text … read more...

  • Continuous Applications

    Continuous Applications are software applications that process and analyze data in real-time, enabling organizations to respond to events and make decisions as soon as new information becomes … read more...

  • Continuous applications

    Continuous applications are end-to-end programs that respond instantly to data. Continuous application embodies the streaming process and it incorporates static data the whole time. Continuous … read more...

  • Convolutional Neural Networks (CNN)

    Convolutional Neural Networks (CNN) are a type of deep learning architecture specifically designed for processing grid-like data, such as images or time-series data. CNNs consist of multiple layers, … read more...

  • Coreference Resolution

    Coreference Resolution is a natural language processing technique that identifies and links noun phrases that refer to the same entity in a text read more...

  • Correlation Analysis

    Correlation Analysis is a statistical method used to evaluate the strength and direction of the relationship between two or more variables. By calculating the correlation coefficient, researchers can … read more...

  • Cosine Similarity

    Cosine Similarity is a measure of similarity between two non-zero vectors of an inner product space. It is widely used in text analysis, information retrieval, and machine learning tasks to compare … read more...

  • Cron

    Cron is a time-based job scheduler in Unix-like operating systems, including Linux and macOS. It allows users to run scripts, commands, or software programs at specified intervals, such as every … read more...

  • Cross-Validation

    Cross-Validation is a widely-used model validation technique in machine learning that helps assess the performance and generalizability of a model. read more...

  • CycleGAN

    CycleGAN is a generative adversarial network (GAN) architecture designed for unsupervised image-to-image translation tasks. It learns a mapping between two different image domains without requiring … read more...

  • DALL-E and DALL-E 2

    DALL-E is a generative AI model developed by OpenAI that generates images from textual descriptions. Combining natural language understanding with image generation capabilities, DALL-E is based on the … read more...

  • Dask

    Dask is an open-source tool that makes it easier for data scientists to carry out parallel computing in Python. Through distributed computing and Dask dataframes, it allows you to work with large … read more...

  • Data Analysis Platform

    A data analysis platform is an environment that provides the necessary services and tools, which are needed to extract value from data. read more...

  • Data Fusion

    Data Fusion is the process of integrating data from multiple sources to create a more comprehensive and accurate representation of the information. It can be applied to various fields, such as remote … read more...

  • Data Governance

    Data Governance is a business issue as much as it looks entirely like a technical challenge solely for the IT team. read more...

  • Data Imputation

    Data Imputation is the process of filling in missing values in a dataset by estimating them based on the available data. Missing data can occur for various reasons, such as sensor failures, data entry … read more...

  • Data Integration

    Data Integration is the process of combining data from different sources and formats into a unified and consistent view. Techniques for data integration include Extract, Transform, Load (ETL), data … read more...

  • Data Mining

    Data Mining is the process of discovering patterns, relationships, and anomalies within large datasets using various techniques, such as machine learning, statistics, and database systems. Data mining … read more...

  • Data Normalization

    Data Normalization is a pre-processing technique used in machine learning and data analysis to scale the features or variables of a dataset to a common range, improving the performance and stability … read more...

  • Data Partitioning

    Data Partitioning is the process of dividing a dataset into smaller, non-overlapping subsets, often for the purpose of training, validating, and testing machine learning models. This division allows … read more...

  • Data Pipelines

    Data Pipelines are a set of tools and techniques for moving and processing data from one system or application to another, used in a variety of industries and applications. read more...

  • Data Preprocessing

    Data Preprocessing is a data mining technique that involves transforming raw data into a format that can be easily analyzed by machine learning algorithms. It improves the quality and usability of … read more...

  • Data Science

    The science of studying data, with a focus on extracting meaningful insights for businesses, is what we call data science. It is multidisciplinary, as it combines the principles and practices from the … read more...

  • Data Science Ethics

    Data Science Ethics refers to the principles, guidelines, and considerations that ensure the responsible and ethical use of data and algorithms in the development and deployment of data-driven … read more...

  • Data Standardization

    Data Standardization, also known as feature scaling or z-score normalization, is a pre-processing technique used in machine learning and data analysis to transform the features or variables of a … read more...

  • Data Transformation

    Data Transformation is the process of converting data from one format or structure to another, with the goal of making it more suitable for analysis or machine learning. read more...

  • Data Visualization

    Data Visualization is the graphical representation of data and information, allowing for easier understanding and analysis of complex data sets. read more...

  • Data Warehouse

    A Data warehouse is a scalable data processing system that supports analytical processes and reporting of insights from data. read more...

  • Data Wrangling

    Data Wrangling, also known as data munging or data cleaning, is the process of transforming and mapping raw data into a structured and more usable format for analysis, reporting, or machine learning … read more...

  • Dataframes

    A dataframe is a data structure that presents data in form of a table with rows and columns. read more...

  • Dataiku

    Dataiku is a collaborative data science and machine learning platform that enables teams of data scientists, analysts, and engineers to work together on data projects. Dataiku provides a unified … read more...

  • Deep Learning

    Deep learning is a subfield of machine learning, which is, in turn, a subfield of artificial intelligence with a central goal of using algorithms modelled like a human brain with a lot of data. read more...

  • Denoising Autoencoders

    Denoising Autoencoders are a type of autoencoder, which is a neural network-based unsupervised learning technique used for dimensionality reduction, feature learning, and data compression. Denoising … read more...

  • Dependency Parsing

    Dependency Parsing is a natural language processing technique that involves analyzing the grammatical structure of a sentence to identify the relationships between words. read more...

  • Differential Privacy

    Differential Privacy is a mathematical framework for preserving the privacy of individuals in a dataset while still allowing statistical analysis of the data. It provides a way to quantify the … read more...

  • Dimensionality Reduction

    Dimensionality Reduction is a technique used in machine learning and data analysis to reduce the number of features or dimensions in a dataset while preserving the essential information. It helps in … read more...

  • DNA Sequence

    A DNA sequence is how the sequence or order of nucleotide bases in a piece of DNA is determined. DNA (deoxyribonucleic acid) contains all the information needed to build and maintain an organism – … read more...

  • Docker

    Docker is an open-source platform that enables one to package an application with the operating system (OS) libraries and all its dependencies required to run it in any environment. read more...

  • ELMo

    ELMo (Embeddings from Language Models) is a deep contextualized word representation that models both complex characteristics of word use and how these uses vary across linguistic contexts. ELMo … read more...

  • Entity Embeddings

    Entity Embeddings are vector representations of categorical variables or entities in a dataset. They can be used to convert categorical data into continuous numerical data, enabling the use of machine … read more...

  • Entity Linking

    Entity Linking is a natural language processing task that involves identifying and disambiguating mentions of real-world entities, such as people, organizations, and locations, within a text. The goal … read more...

  • ETL (Extract, Transform, Load)

    ETL (Extract, Transform, Load) is a data integration process that involves extracting data from various sources, transforming it into a structured and usable format, and loading it into a target data … read more...

  • Evolutionary Algorithms

    Evolutionary Algorithms (EAs) are optimization algorithms inspired by the biological evolution process. They are used for solving optimization problems by simulating the process of natural selection, … read more...

  • Exponential Smoothing

    Exponential Smoothing is a time series forecasting method that involves assigning exponentially decreasing weights to past observations, with the goal of making recent observations more important than … read more...

  • F1 Score

    The F1 Score is a performance metric used to evaluate binary classification models. It is the harmonic mean of precision and recall, which are two measures of classification performance. The F1 Score … read more...

  • Fast AI

    Fast.ai is a deep learning library for Python that aims to simplify the process of building and training neural networks. It is built on top of PyTorch and provides a high-level API that makes it easy … read more...

  • FastAPI

    FastAPI is a modern, high-performance Python web framework for building APIs quickly and efficiently. It has benefits such as fast performance, easy data validation, automatic documentation, and type … read more...

  • Feature Engineering

    Feature Engineering is the process of creating new features or transforming existing features in a dataset to improve the performance of machine learning models. read more...

  • Feature Extraction

    Feature Extraction is the process of transforming raw data into a set of features that can be used as input to a machine learning algorithm. It involves selecting the most relevant and informative … read more...

  • Feature Importance

    Feature Importance is a measure of the relative contribution of each feature in a dataset to the performance of a machine learning model. It helps in understanding the effect of individual features on … read more...

  • Feature Scaling

    Feature Scaling is a data preprocessing technique that involves transforming the features of a dataset to have similar scales or ranges, improving the performance and accuracy of machine learning … read more...

  • Feature Selection

    Feature Selection is the process of selecting a subset of the most important and relevant features from the original dataset for use in machine learning models. read more...

  • Few-shot Learning

    Few-shot learning is a machine learning paradigm that aims to train models to recognize new classes with only a small number of labeled examples. This is in contrast to traditional machine learning, … read more...

  • Fine-tuning

    Fine-tuning is a technique used in machine learning and deep learning where a pre-trained model is further trained on a new, target dataset to adapt its weights and biases for the specific task. It is … read more...

  • Flask

    Flask is a lightweight Python web framework that allows developers to build web applications quickly and easily. It provides a minimal set of tools and libraries needed to create web applications, … read more...

  • Flux

    Flux is a machine-learning library for the multi-paradigm, fast, statistical programming language, Julia, which was developed by MIT. Flux is able to take another Julia function and a set of arguments … read more...

  • Foundation Models

    Foundation models are large-scale pre-trained machine learning models that serve as a base for a wide range of downstream tasks. Key features include transfer learning, scalability, and multimodal … read more...

  • Gaussian Mixture Models

    Gaussian Mixture Models (GMMs) are a probabilistic model used for clustering, density estimation, and data generation. GMMs represent a mixture of multiple Gaussian distributions, each with its own … read more...

  • Gaussian Processes

    Gaussian Processes (GPs) are a non-parametric Bayesian modeling technique used for regression, classification, and optimization. GPs model the function space directly, rather than having a fixed set … read more...

  • Generative Adversarial Networks (GANs)

    Generative Adversarial Networks (GANs) are a class of neural networks that are trained to generate new data that is similar to a training dataset, with applications in image generation, video … read more...

  • Generative AI

    Generative AI is a branch of artificial intelligence that focuses on creating new content or data, such as images, text, music, or other forms of media, by learning from existing data. read more...

  • Genomics

    Genomics is a field of science, which is focused on understanding and interpreting the DNA makeup of an organism through sequencing and analysis. Just as a genome is central to the life of an … read more...

  • Gensim

    Gensim is an open-source Python library for natural language processing (NLP), specifically designed for unsupervised topic modeling and document similarity analysis, with efficient implementations of … read more...

  • GPU

    Graphics Processing Unit (GPU) is a computer chip that is responsible for handling the computational demands of graphics-intensive functions on a computer read more...

  • Gradient Boosting

    Gradient Boosting is a popular ensemble method for building powerful machine learning models, involving the combination of multiple weak models, typically decision trees, to create a strong predictive … read more...

  • Gradient Descent

    Gradient Descent is an optimization algorithm used for finding the minimum of a function, commonly used in machine learning and deep learning to optimize the parameters of models. Gradient Descent … read more...

  • Graph Neural Networks

    Graph Neural Networks (GNNs) are a class of deep learning models designed to work with graph-structured data. GNNs are particularly useful for tasks involving relational or spatial data, such as … read more...

  • Grid Search

    Grid Search is a hyperparameter tuning technique used in machine learning to find the optimal combination of hyperparameters for a model by performing an exhaustive search through a manually specified … read more...

  • Hamiltonian Monte Carlo

    Hamiltonian Monte Carlo (HMC) is a Markov Chain Monte Carlo (MCMC) sampling technique used to sample from complex, high-dimensional probability distributions, such as those encountered in Bayesian … read more...

  • Heterogeneous Graph Neural Networks

    Heterogeneous Graph Neural Networks (HGNNs) are a class of deep learning models designed to handle graph-structured data with multiple types of nodes and edges. Traditional Graph Neural Networks … read more...

  • Hidden Markov Models

    Hidden Markov Models (HMMs) are a class of probabilistic models used to represent systems that evolve over time and exhibit both observable and hidden (or latent) variables. HMMs are based on the … read more...

  • Hierarchical Bayesian Models

    Hierarchical Bayesian Models, also known as multilevel or hierarchical models, are a class of Bayesian statistical models that allow for the modeling of complex, hierarchical data structures. These … read more...

  • Hosted Jupyter

    Hosted or Cloud Jupyter notebooks are integrated development environments that provide a complete ecosystem for data science and machine learning. Cloud Jupyter comes with already installed and … read more...

  • Hosted Notebooks

    Hosted notebooks are cloud-based platforms that provide an interactive environment for users to write, execute, and share code, as well as visualize data and results read more...

  • Hugging Face

    Hugging Face is an artificial intelligence (AI) research organization that develops open-source tools and libraries for natural language processing (NLP) tasks. They are best known for their … read more...

  • Human-in-the-Loop

    Human-in-the-Loop (HITL) is an approach to machine learning and artificial intelligence that involves humans in the development, training, and evaluation process. This approach is particularly used … read more...

  • Hybrid Recommender Systems

    Hybrid Recommender Systems combine two or more recommender systems, such as Content-Based Filtering and Collaborative Filtering, to provide more accurate and diverse recommendations for various … read more...

  • Hyperparameter Tuning

    Hyperparameter tuning is the process of selecting the best set of hyperparameters for a machine learning model. It aims to optimize the model performance on a given task by searching through a range … read more...

  • Imbalanced Data

    Imbalanced data refers to a situation in which the distribution of classes in a dataset is not equal. In machine learning, this can lead to biased models that favor the majority class and perform … read more...

  • Independent Component Analysis

    Independent Component Analysis (ICA) is a statistical and computational technique used for separating a multivariate signal into its independent components. It is based on the assumption that the … read more...

  • Information Retrieval

    Information Retrieval (IR) is the process of searching for, identifying, and retrieving relevant information from large collections of data, such as documents, images, or databases. IR techniques are … read more...

  • Interpretability in Machine Learning

    Interpretability, in the context of machine learning and artificial intelligence, refers to the ability to understand and explain the reasoning behind the predictions or decisions made by a model. It … read more...

  • Introduction to Julia Programming Language

    Julia is a high-level, high-performance, dynamic programming language for technical computing. It is designed to address the needs of high-performance numerical and scientific computing while also … read more...

  • Inverse Reinforcement Learning

    Inverse Reinforcement Learning (IRL) is a method used in machine learning where an agent learns the reward function of an environment by observing the behavior of an expert. The goal of IRL is to … read more...

  • Isolation Forest

    Isolation Forest is an unsupervised machine learning algorithm used for anomaly detection. It works by recursively partitioning the feature space using random splits, eventually isolating each data … read more...

  • JAX

    JAX is a Python library that provides high-performance numerical computing capabilities by generating GPU- or TPU-optimized code using the XLA compiler. JAX offers NumPy-like functionality with … read more...

  • Jupyter

    Jupyter is an open-source project with the goal of developing comprehensive browser-based software for interactive computing. It has allowed scientists all over the world to collaborate by being able … read more...

  • Jupyter Notebook

    Jupyter Notebook is an open-source web-based application that enables one to create, and share computational documents which contain live code, equations, visualizations and explanatory text. Just … read more...

  • Jupyter Notebook vs JupyterLab

    Jupyter Notebook and JupyterLab are both interactive computing environments that enable users to work with code, data, and multimedia content within a web-based interface. This article outlines the … read more...

  • JupyterHub

    JupyterHub is an open-source platform designed to serve Jupyter Notebooks to multiple users, making it an ideal solution for team collaboration, teaching, and research. read more...

  • k-NN (k-Nearest Neighbours)

    k-Nearest Neighbours (k-NN) is a machine learning algorithm used for both classification and regression tasks. It is a non-parametric method that is based on the idea of finding k-nearest data points … read more...

  • Keras

    Keras is a high-level deep learning library for Python that simplifies the process of building, training, and evaluating neural networks. Developed by François Chollet, Keras is built on top of … read more...

  • Knowledge Distillation

    Knowledge Distillation is a technique in machine learning used to transfer knowledge from a large, complex model (called the teacher model) to a smaller, more efficient model (called the student … read more...

  • Knowledge Graphs

    Knowledge Graphs are a structured representation of knowledge that consists of entities, relationships, and attributes. They are used to store, organize, and retrieve information in a way that is both … read more...

  • Kubernetes

    Kubernetes is an open-source container orchestration platform that automates deployment, scaling, and management of containerized applications. It provides a powerful and extensible framework for … read more...

  • Label Encoding

    Label encoding is a process of assigning numerical labels to categorical data values. It is a simple and efficient way to convert categorical data into numerical data that can be used for analysis and … read more...

  • Label Smoothing

    Label Smoothing is a regularization technique used in deep learning classification tasks to prevent overfitting and improve generalization. It works by smoothing the target labels, replacing hard … read more...

  • Large Language Models

    Large Language Models (LLMs) are advanced natural language processing models trained on massive amounts of text data. They can perform various tasks, such as translation, summarization, sentiment … read more...

  • Latent Dirichlet Allocation

    Latent Dirichlet Allocation (LDA) is a generative probabilistic model used in natural language processing and machine learning for discovering topics in large collections of documents. LDA assumes … read more...

  • Latent Semantic Analysis

    Latent Semantic Analysis (LSA) is a method used in natural language processing and information retrieval to analyze relationships between words and documents in a large corpus by reducing the … read more...

  • Lemmatization

    Lemmatization is the process of reducing a word to its base or root form, also known as its lemma, while still retaining its meaning. It is an important technique in natural language processing (NLP) … read more...

  • LightGBM

    LightGBM is a popular open-source gradient boosting framework developed by Microsoft that is designed to be highly efficient and scalable. It uses a unique algorithm called Gradient-based One-Side … read more...

  • Linear Discriminant Analysis

    Linear Discriminant Analysis (LDA) is a dimensionality reduction technique used in machine learning and statistics to find a linear combination of features that best separates two or more classes of … read more...

  • Linear Regression

    Linear Regression is a statistical method that models the relationship between a dependent variable (y) and one or more independent variables (X). It aims to find the best-fitting linear equation that … read more...

  • Link Prediction

    Link prediction is a task in network analysis that aims to predict the likelihood of a connection between two nodes in a graph or network. It is commonly used in social network analysis, recommender … read more...

  • Logistic Regression

    Logistic Regression is a statistical method for analyzing a dataset with one or more independent variables that determine a binary outcome. It is used to predict a binary outcome based on the given … read more...

  • Long Short-Term Memory (LSTM)

    Long short-term memory (LSTM) is a type of recurrent neural network (RNN) architecture that was designed to overcome the vanishing gradient problem that occurs in traditional RNNs. LSTMs are capable … read more...

  • Loss Functions

    Loss functions, also known as cost functions or objective functions, are used in machine learning to quantify the difference between the predicted values and the actual values of the target variable. … read more...

  • Machine Learning

    Machine Learning is a subfield of artificial intelligence that focuses on developing algorithms and models that enable computers to learn from and make predictions or decisions based on data. It … read more...

  • MapReduce

    MapReduce is a programming model and processing technique for large-scale parallel data processing. It is designed to handle and process large volumes of data in a distributed computing environment. read more...

  • Markov Chain Monte Carlo (MCMC)

    Markov Chain Monte Carlo (MCMC) is a family of algorithms for sampling from a probability distribution, primarily used in Bayesian statistics and statistical physics. MCMC algorithms are useful in … read more...

  • Masked Language Models

    Masked Language Models (MLMs) are a type of language model used in natural language processing tasks, trained to predict masked words in a given input sequence based on the context provided by … read more...

  • Max Pooling

    Max pooling is a downsampling technique used in convolutional neural networks (CNNs) to reduce the spatial dimensions of feature maps while preserving the most important information. It is commonly … read more...

  • Mean Shift Clustering

    Mean Shift Clustering is a non-parametric, unsupervised machine learning technique used for clustering data points based on their density. It is particularly suited for applications where the number … read more...

  • Meta-Learning

    Meta-learning, or learning to learn, is a subfield of machine learning focused on designing algorithms and models that can quickly adapt to new tasks with minimal supervision or training data. Some … read more...

  • Metaflow

    Metaflow is an open-source Python library for building and managing data science workflows, developed by Netflix. It aims to make it easy for data scientists to build, deploy, and scale machine … read more...

  • MLflow

    MLflow is an open-source platform for managing the end-to-end machine learning lifecycle, developed by Databricks. It provides tools for tracking experiments, packaging code into reproducible runs, … read more...

  • MLOps (Machine Learning Operations)

    MLOps, or Machine Learning Operations, is a set of practices that combines machine learning, DevOps, and data engineering to streamline the process of deploying, monitoring, and maintaining machine … read more...

  • MLOps Platforms

    MLOps Platforms are software solutions that help organizations manage the end-to-end machine learning lifecycle, from data preprocessing and model development to deployment, monitoring, and … read more...

  • Model Drift

    Model drift is a common issue in machine learning where the performance of a model degrades over time due to changes in the input data distribution. read more...

  • Model Evaluation

    Model evaluation is a critical process in machine learning that is used to assess the performance of a trained model. It involves comparing the predicted values from the model to the actual values in … read more...

  • Model Monitoring

    Model monitoring is the process of tracking the performance of a machine learning model in real-time and making adjustments as needed to ensure that the model continues to perform accurately and … read more...

  • Multilabel Classification

    Multilabel classification is a type of supervised learning problem where an instance can belong to multiple classes simultaneously. This is different from multiclass classification, where each … read more...

  • Multilayer Perceptron (MLP)

    A Multilayer Perceptron (MLP) is a type of artificial neural network composed of multiple layers of nodes or neurons. MLPs are feedforward networks, meaning that data travels in one direction from the … read more...

  • Multimodal Learning

    Multimodal learning is a subfield of machine learning that focuses on developing models that can process and learn from multiple types of data simultaneously, such as text, images, audio, and video. … read more...

  • Multimodal Pre-training

    Multimodal pre-training is the process of training machine learning models on multiple modalities, such as text, images, and audio, before fine-tuning them for specific tasks. This pre-training allows … read more...

  • Multitask Learning

    Multitask learning is a machine learning approach where a single model is trained to perform multiple tasks simultaneously. This approach can lead to better generalization, improved performance on … read more...

  • N-grams

    N-grams are contiguous sequences of n items from a given sample of text or speech. In the context of natural language processing, an n-gram is a sequence of n words or characters. They are used to … read more...

  • Naive Bayes

    Naive Bayes is a family of probabilistic algorithms based on applying Bayes' theorem with the "naive" assumption of independence between every pair of features. It is effective for many classification … read more...

  • Named Entity Recognition (NER)

    Named Entity Recognition (NER) is a subtask of information extraction in natural language processing that aims to identify and classify named entities within a given text, such as people, … read more...

  • Natural Language Generation (NLG)

    MLOps Platforms are software solutions that help organizations manage the end-to-end machine learning lifecycle, from data preprocessing and model development to deployment, monitoring, and … read more...

  • Natural Language Processing (NLP)

    Natural Language Processing (NLP) is a subfield of artificial intelligence, linguistics, and computer science that focuses on developing algorithms and models to enable computers to understand, … read more...

  • Neural Networks

    Neural Networks are a class of machine learning models inspired by the structure and function of the human brain. They consist of interconnected artificial neurons or nodes, organized in layers, that … read more...

  • Non-negative Matrix Factorization (NMF)

    Non-negative Matrix Factorization (NMF) is a dimensionality reduction and data analysis technique that decomposes a non-negative matrix into two lower-dimensional non-negative matrices, approximating … read more...

  • Normalization in Data Preprocessing

    Normalization is a data preprocessing technique used to transform features in a dataset to a common scale, improving the performance and accuracy of machine learning algorithms. The main goal of … read more...

  • NumPy

    NumPy was built by Travis Oliphant in 2005. Today, it is popularly used for data science, engineering, and mathematical programming. It has become a global standard in Python for performing … read more...

  • NVIDIA RAPIDS

    NVIDIA RAPIDS is an open-source software library that provides data science and machine learning tools for GPU-accelerated computation. It enables the execution of end-to-end data science and … read more...

  • Object Detection

    Object detection is a computer vision technique that identifies and locates objects within digital images or videos. It involves the use of deep learning algorithms, such as convolutional neural … read more...

  • Object Recognition

    Object recognition, also known as object classification, is a subfield of computer vision that focuses on identifying objects within digital images or videos. It involves training machine learning … read more...

  • Octave Parallel

    Octave Parallel is a feature of the GNU Octave software that enables users to perform parallel computations using multiple CPU cores or clusters. It significantly improves the execution time of … read more...

  • One-hot Encoding

    One-hot encoding is a technique used to represent categorical variables as binary vectors. It involves converting a categorical variable with k distinct categories into k separate binary features, … read more...

  • One-shot Learning

    One-shot learning is a machine learning approach that aims to train models to recognize new objects or classes based on very few examples, sometimes as few as one. read more...

  • OpenAI Five

    OpenAI Five is a team of five neural networks developed by OpenAI that were trained to play the popular online game, Dota 2. OpenAI Five uses reinforcement learning to learn how to play the game by … read more...

  • Optimization Algorithms

    Optimization algorithms are mathematical methods used to find the best possible solution to a given problem by minimizing or maximizing an objective function. These algorithms are widely used in … read more...

  • Ordinal Regression

    Ordinal regression, also known as ordinal logistic regression or ordered logit, is a statistical method used to predict an ordinal variable, which is a type of categorical variable with a natural … read more...

  • Out-of-Distribution Detection

    Out-of-distribution (OOD) detection is the process of identifying data samples that belong to a different distribution than the one used to train a machine learning model. OOD detection is essential … read more...

  • Outlier Detection

    Outlier detection, also known as anomaly detection, is the process of identifying data points that deviate significantly from the expected pattern or distribution of the data. Outliers can be the … read more...

  • Overfitting in Machine Learning

    Overfitting occurs when a machine learning model learns to perform well on the training data but does not generalize well to new, unseen data. This situation arises when the model is too complex and … read more...

  • P-value

    A P-value is a measure of the evidence against a null hypothesis in a hypothesis test. It represents the probability of observing a test statistic at least as extreme as the one calculated from the … read more...

  • PageRank

    PageRank is an algorithm developed by Google founders Larry Page and Sergey Brin to measure the importance of web pages. It assigns a numerical value to each web page based on the number and quality … read more...

  • Pandas

    Pandas is a Python library for data analysis and manipulation. It provides powerful data analysis tools and data structures for handling complex and large-scale datasets. read more...

  • Pandas Profiling

    Pandas Profiling is a Python package that provides an automated way to generate quick and extensive exploratory data analysis (EDA) reports on your datasets. It integrates with the popular pandas … read more...

  • Parallel Computing

    Parallel computing uses multiple processors to perform a single task simultaneously, in order to increase the speed and efficiency of the computation. This is done by dividing the task into smaller … read more...

  • Paraphrasing

    Paraphrasing is the process of rephrasing or rewriting text, speech, or content while retaining the original meaning. It is an essential skill in writing, communication, and natural language … read more...

  • Parquet

    Parquet is an open-source columnar storage format for efficient and high-performance data storage and processing. It is used in a wide range of big data applications, including Apache Hadoop and … read more...

  • Part-of-Speech (POS) Tagging

    Part-of-Speech (POS) tagging is the process of labeling words in a text with their corresponding part of speech, such as noun, verb, adjective, or adverb. It is used for a variety of natural language … read more...

  • Perceptron

    A perceptron is a simple binary classifier used in supervised learning, often considered as the simplest form of an artificial neural network. It takes a set of input features, multiplies them by … read more...

  • Plotly

    Plotly is a popular open source interactive data visualization tools that allow you create visualizations or charts to understand your data. Plotly has over 40 different types of charts for … read more...

  • Polynomial Regression

    Polynomial Regression is a form of regression analysis in which the relationship between the independent variable x and the dependent variable y is modeled as an nth-degree polynomial. It is used when … read more...

  • Pre-trained Language Models

    Pre-trained language models are machine learning models that have been trained on large amounts of text data and can be fine-tuned for specific natural language processing (NLP) tasks. These models … read more...

  • Precision

    Precision is a performance metric used in classification tasks to evaluate the accuracy of positive predictions made by a model. It is the ratio of true positive predictions to the total number of … read more...

  • Prophet - Time Series Forecasting Library

    Prophet is an open-source time series forecasting library developed by Facebook. It is designed to handle a wide range of time series data, including daily, weekly, and monthly data, and works well … read more...

  • Proximal Policy Optimization

    Proximal Policy Optimization (PPO) is a reinforcement learning algorithm developed by OpenAI. It is an on-policy optimization technique designed to improve sample efficiency and stability in training … read more...

  • Pyro - Deep Probabilistic Programming

    Pyro is a flexible, scalable deep probabilistic programming library built on PyTorch. Developed by Uber AI Labs, Pyro aims to provide a unified platform for both deep learning and probabilistic … read more...

  • PySpark

    PySpark is the Python API for Apache Spark, an open-source distributed computing framework used for big data processing and analysis. PySpark is a powerful tool for big data processing and analysis, … read more...

  • Python Programming Language

    Python is a high-level, interpreted programming language known for its simplicity, readability, and versatility. Python has a wide range of applications, including web development, scientific … read more...

  • PyTorch

    PyTorch is an open-source machine learning library developed by Facebook's AI Research lab (FAIR) that provides Tensor computation, deep learning, and automatic differentiation capabilities. PyTorch … read more...

  • PyTorch Lightning

    PyTorch Lightning is a lightweight wrapper around the PyTorch library that helps researchers and engineers to organize their PyTorch code and streamline the training process. PyTorch Lightning … read more...

  • Quantum Machine Learning

    Quantum Machine Learning (QML) is an emerging field that explores the intersection of quantum computing and machine learning. It aims to develop quantum algorithms and methods to improve the … read more...

  • Question Answering

    Question Answering (QA) is a natural language processing task that involves training AI models to understand and answer questions posed in human language. QA systems can be built using various … read more...

  • R Programming Language

    R is a programming language and software environment for statistical computing and graphics. It is widely used by statisticians, data scientists, and researchers for data analysis, statistical … read more...

  • R-squared

    R-squared, also known as the coefficient of determination, is a statistical measure that represents the proportion of the variance of a dependent variable that can be explained by the independent … read more...

  • Random Forests

    Random Forests are an ensemble learning method used for both classification and regression tasks. They work by constructing a multitude of decision trees at training time and outputting the class that … read more...

  • Ray

    Ray is an open-source platform designed for building distributed applications with ease. It is a flexible and scalable system that can handle a wide range of workloads, from simple data processing … read more...

  • Recall

    Recall, also known as sensitivity or true positive rate, is a performance metric used in classification tasks to measure the ability of a model to correctly identify all the positive instances. It is … read more...

  • Regression

    Regression is a statistical method for determining the relationship between dependent and independent variables in machine learning and data analysis. Linear regression models can be used to predict … read more...

  • Regularization (L1, L2)

    Regularization is a technique used in machine learning to prevent overfitting. L1 and L2 regularization, also known as Lasso and Ridge, are two common regularization methods that penalize large … read more...

  • Regularized Greedy Forest

    Regularized Greedy Forest (RGF) is an ensemble learning method for classification and regression tasks. It is an extension of the gradient boosting algorithm and aims to improve the performance of … read more...

  • S3 Bucket

    S3 is an AWS (Amazon web service) product that offers data storage, scalability, and security. With S3, you can store data of various sizes and kinds such as text, file, object, videos, backup and … read more...

  • Sampling Techniques

    Sampling techniques are methods used to select a subset of data or observations from a larger population or dataset for analysis. They can be broadly classified into two categories: probability … read more...

  • Scala

    Scala is a modern, high-level, statically-typed programming language that seamlessly integrates features of both object-oriented programming and functional programming. It runs on the Java Virtual … read more...

  • Scikit-Learn

    Scikit-learn offers a range of algorithms for supervised, unsupervised and reinforcement learning algorithms which include non-linear, linear, ensemble, association, clustering, dimension reduction … read more...

  • Seasonal Decomposition of a Time Series (STL)

    STL is a method for decomposing a time series into its components: seasonal, trend, and remainder. It applies a locally weighted regression technique called Loess to estimate the trend component and … read more...

  • Self-Supervised Learning

    Self-Supervised Learning (SSL) is a learning paradigm in which a machine learning model learns useful features or representations from unlabeled data by generating its own supervisory signals. This is … read more...

  • Semantic Parsing

    Semantic parsing is a natural language processing task that involves converting a natural language sentence into a formal representation of its meaning, such as a logical form or a structured query. … read more...

  • Semantic Role Labeling

    Semantic Role Labeling (SRL) is a natural language processing task that involves identifying the semantic roles or arguments associated with a predicate (usually a verb) in a sentence. The goal of SRL … read more...

  • Semi-Supervised Learning

    Semi-Supervised Learning is a type of machine learning that uses both labeled and unlabeled data for training. It is useful when labeling data is expensive or time-consuming and can lead to more … read more...

  • Sentiment Analysis

    Sentiment Analysis is a computational technique used to identify and extract subjective information from text data. It can be used to analyze customer reviews, social media posts, news articles, and … read more...

  • Sequence Transduction

    Sequence Transduction, also known as sequence-to-sequence modeling, is a machine learning task that involves converting an input sequence into an output sequence, potentially of different lengths. It … read more...

  • Sequence-to-Sequence Models (Seq2Seq)

    Sequence-to-sequence (seq2seq) models are a class of deep learning models used for various natural language processing (NLP) tasks, such as machine translation, summarization, dialogue generation, and … read more...

  • Similarity Metrics

    Similarity Metrics are mathematical measures used to quantify the similarity or dissimilarity between objects, such as vectors, strings, or sets. They are often used in machine learning and data … read more...

  • SMOTE

    SMOTE is a popular oversampling technique used to balance imbalanced datasets in machine learning. It works by generating synthetic examples for the minority class to balance the class distribution. read more...

  • Snowflake

    Snowflake is a cloud-based data warehousing platform designed to store, process, and manage large volumes of structured and semi-structured data. It provides a scalable and high-performance solution … read more...

  • spaCy

    spaCy is a free, open-source library for Natural Language Processing (NLP) in Python. It provides an easy-to-use interface for processing and analyzing textual data, including tokenization, … read more...

  • Stable Diffusion

    Stable diffusion is a deep learning, text-to-image model released in 2022. It is primarily used to generate detailed images conditioned on text descriptions, but can also be applied to tasks like … read more...

  • Stemming in Natural Language Processing

    Stemming is a text preprocessing technique used in natural language processing (NLP) to reduce words to their root or base form. The goal of stemming is to simplify and standardize words, which helps … read more...

  • Stochastic Gradient Descent

    Stochastic Gradient Descent (SGD) is an optimization algorithm used in machine learning and deep learning to minimize a loss function by iteratively updating the model parameters. Unlike Batch … read more...

  • Stopword Removal

    Stopword removal is a common preprocessing step in natural language processing (NLP) that involves removing words that are considered to be of little value in text analysis due to their high frequency … read more...

  • T-test

    A T-test is a hypothesis testing procedure that is used to determine if there is a significant difference between the means of two groups. It is based on the t-distribution and can be used to compare … read more...

  • TabNet

    TabNet is a deep learning architecture specifically designed for tabular data, introduced by Google Research. It can be employed in applications involving tabular data, such as predictive modeling, … read more...

  • Teacher Forcing

    Teacher forcing is a training technique used in recurrent neural networks (RNNs) and other sequence-to-sequence models, particularly for tasks such as language modeling, translation, and text … read more...

  • Tensorflow

    TensorFlow is an open-source framework for building and training machine learning models. It was developed by Google and is widely used in various applications, from image and speech recognition to … read more...

  • Term Frequency-Inverse Document Frequency (TF-IDF)

    TF-IDF is a numerical statistic used in natural language processing and information retrieval to measure the importance of a word in a document or a collection of documents. It reflects the relevance … read more...

  • Text Generation

    Text Generation is an NLP task that leverages artificial intelligence to create human-like, coherent, and contextually relevant text. It has various applications, including content creation, … read more...

  • Text Summarization

    Text summarization is a natural language processing task that involves generating a concise and coherent summary of a longer text while preserving its main ideas and essential information. The two … read more...

  • Text-to-Image Synthesis

    Text-to-Image Synthesis refers to the process of generating images from textual descriptions using artificial intelligence techniques, such as deep learning and generative models. This task aims to … read more...

  • Time Series Analysis

    Time Series Analysis is a set of statistical techniques used to analyze and extract meaningful insights from time-ordered data. It aims to understand the underlying structure, patterns, or trends … read more...

  • Time Series Decomposition

    Time Series Decomposition is a technique used to break down a time series into its constituent components, such as trend, seasonality, and residual or noise. It can be employed in various applications … read more...

  • Time Series Forecasting

    Time Series Forecasting is the process of using historical time series data to predict future values or trends. It is a crucial technique in various domains, including finance, economics, weather, … read more...

  • Tokenization in Natural Language Processing

    Tokenization is the process of breaking down text into individual units, called tokens. It is a fundamental step in the preprocessing of text data and offers several advantages, such as improved text … read more...

  • Tokenization Strategies

    Tokenization strategies are different approaches to breaking down text into individual units or tokens. Common tokenization strategies include word, subword, character, and sentence tokenization. The … read more...

  • Topic Modeling

    Topic Modeling is an unsupervised machine learning technique that aims to discover hidden thematic structures or topics within a large collection of documents. Popular algorithms for Topic Modeling … read more...

  • Topic Modeling Algorithms (LDA, NMF, PLSA)

    Topic Modeling Algorithms are unsupervised machine learning techniques used to discover hidden thematic structures or topics within a large collection of documents. Some popular Topic Modeling … read more...

  • Training and Test Sets in Machine Learning

    Training and test sets are subsets of a dataset used in the process of training and evaluating machine learning models. They play a crucial role in model training, evaluation, selection, tuning, and … read more...

  • Transfer Learning

    Transfer Learning is a machine learning technique where a pre-trained model is adapted and fine-tuned to solve a different but related task or problem. This approach allows faster training and … read more...

  • Transformer-XL

    Transformer-XL is an extension of the Transformer architecture that addresses the limitations of fixed-length context in the original model. It is capable of handling longer-term dependencies in … read more...

  • Transformers in Natural Language Processing

    Transformers are a type of neural network architecture that have gained significant popularity due to their ability to efficiently model long-range dependencies in language and achieve … read more...

  • Trax - A High-Performance Deep Learning Library

    Trax is an open-source, high-performance deep learning library developed by Google Brain that focuses on providing a clean and simple interface for building neural networks. It is designed with … read more...

  • Turing Test

    The Turing Test is a benchmark for artificial intelligence, evaluating a machine ability to exhibit human-like intelligence in natural language processing. It assesses natural language understanding, … read more...

  • Underfitting

    Underfitting refers to a machine learning model that fails to capture the underlying pattern or relationship in the dataset, resulting in poor performance on both training and test data. read more...

  • Unstructured Data

    Unstructured Data refers to information that lacks a predefined data model, schema, or consistent structure. This type of data can be found in various formats, such as text documents, images, videos, … read more...

  • Unsupervised Learning

    Unsupervised learning is a type of machine learning where the model learns from a dataset without labeled output variables. The goal of unsupervised learning is to discover hidden patterns, … read more...

  • Uplift Modeling

    Uplift modeling is a machine learning technique that estimates the causal impact of an intervention on a target population. It helps organizations optimize resources and maximize the effectiveness of … read more...

  • Vapnik-Chervonenkis (VC) Dimension

    The Vapnik-Chervonenkis (VC) dimension is a fundamental concept in statistical learning theory and computational learning theory, measuring a model capacity or complexity. Understanding and applying … read more...

  • Variational Autoencoders - Generative Models for Unsupervised Learning

    Variational Autoencoders (VAEs) are a type of generative model that combines aspects of deep learning and probabilistic modeling to learn compact, structured representations of high-dimensional data. … read more...

  • Vector Quantization

    Vector Quantization (VQ) is a technique used in signal processing, data compression, and pattern recognition that involves quantizing continuous or discrete data into a finite set of representative … read more...

  • Version Control Systems (Git, SVN)

    Version control systems, such as Git and Subversion (SVN), are tools that help manage changes to documents, computer programs, large websites, and other collections of information. These systems allow … read more...

  • ViT (Vision Transformer)

    The Vision Transformer (ViT) is a deep learning architecture that applies the Transformer model, originally designed for natural language processing tasks, to computer vision problems. ViT has … read more...

  • Voice Synthesis

    Voice synthesis, also known as speech synthesis or text-to-speech (TTS), is the process of converting written text into spoken language using artificial intelligence and digital signal processing … read more...

  • VQGAN (Vector Quantized Generative Adversarial Network)

    VQGAN combines the power of generative adversarial networks (GANs) and vector quantization (VQ) to generate high-quality images. This model offers several benefits, such as control over image … read more...

  • Web Scraping

    Web Scraping, also known as web harvesting or web data extraction, is the process of automatically collecting information from websites by extracting data from HTML, XML, or other structured web … read more...

  • Weighted Ensemble

    Weighted ensemble is a machine learning technique used in molecular dynamics and statistical physics. It involves creating a large number of small parallel simulations of a system, then combining the … read more...

  • Wide and Deep Learning

    Wide and Deep Learning is a machine learning technique introduced by Google in 2016. It combines the strengths of two distinct types of neural networks: wide linear models and deep neural networks, … read more...

  • Word Embeddings (Word2Vec, GloVe, FastText)

    Word embeddings are a type of natural language processing technique used to represent words as vectors of real numbers. They capture the semantic and syntactic meaning of words in a given context, and … read more...

  • XGBoost

    XGBoost (Extreme Gradient Boosting) is a machine learning algorithm used for supervised learning tasks, such as classification, regression, and ranking problems. XGBoost is an extension of the … read more...

  • Yield Curve

    A Yield Curve is a graphical representation of the relationship between the yields of bonds of different maturities, typically for U.S. Treasury securities. The Yield Curve is an important tool used … read more...

  • Zero-shot Learning

    Zero-shot learning is a machine learning approach that aims to train models to recognize and classify objects or concepts for which they have not been explicitly trained. It relies on semantic … read more...