
Neural Networks in R
Jacqueline Nolis

Head of Data Science
@skyetetra

A flexible cloud platform for data science
(and free for 30 hours a month)

Switch from
developing on a

laptop to the
cloud

Use GPUs, up
to 4TB of RAM,
and over 100

core machines

Host
dashboards,

apis, and
scheduled jobs

Now has full R support!
● Edit code in RStudio
● Use R with GPUs, 4TB of RAM, 100 cores
● Host Shiny & Plumber apps, schedule R jobs
● Works with RStudio Connect and Package Manager

Neural Networks and R

(first: what are neural networks?)

What is a linear regression?

Linear regression y ~ X

lm(y ~ x1 + x2 + x3 + x4, data)

What are neural networks?

Neural network

What are neural networks?
Basically* string a
bunch of linear
regressions together!

Still y ~ X

Neural
networks are
powerful

The rows of linear
regressions called “layers”

x1 x2 x3 x4

y

* notes:
- fitting the regressions gets

complicated
- sometimes apply functions to

output of each layer (called
activation)

When are neural networks helpful?

Small data Big data

linear/logistic
regression

XGBoost/CatBoost
/LightGBM

Neural networks

Best

Best

Best

● Can be extremely
powerful with large data

● Not particularly effective
with small amounts of
data

● Some network layers are
especially useful for
different types of data
(images, NLP)

Neural networks are FUNNY

Namita
Nandakumar
@nnstats

House Targaryen names

Julia Silge
@juliasilge

the happiness of her sisters and had
heard of the earnest of the servance
of the consequence of the family of
the very little to her friend to her
family of the lady of the moment to
the persuaded her to her sisters were
allow to

Jane Austen textsDinosaur species

Ryan Timpe
@ryantimpe

(me)

Offensive license plates

(Great for generating data)

Training neural networks in R

Project: let’s make pet names!
Using data from the city of Seattle

Mosdin Graggie Raggopies
Kaiser Bliss Clark

Modern Neural Network Libraries

Deep learning is in R!

● keras/tensorflow R libraries (what we’ll be using)
○ Simple tidy syntax for Keras
○ TensorFlow power when needed
○ “Secretly” runs Python and TensorFlow (with

Keras) on the backend with reticulate package
● torch R libraries

○ C++ implementation (no Python needed)
(projects are lead by RStudio)

Now let’s see
what’s really
behind the R

package

The data

● Years of pet license
records

● Only care about the name

● Train a neural network to
learn the patterns

Format the data

● Want to predict the next letter based on previous letters

● Training data for name “Spot”:

X_1 X_2 X_3 X_4 X_5 Y
(blank) (blank) (blank) (blank) (blank) S
(blank) (blank) (blank) (blank) S P
(blank) (blank) (blank) S P O
(blank) (blank) S P O T
(blank) S P O T (stop)

Convert letters to numbers

● Create a dictionary (A=1,B=2,…)

● One hot encode each number (3 = [0,0,1,0,..,0])

__spo 🡪 [0,0,19,16,15] 🡪 […,[0,0,…,1,…,0], …]

Input X is a 3-dimensional binary matrix! Size: (num_rows, max_length, num_chars)

Target y is a 2-dimensional binary matrix! Size: (num_rows, num_chars)

Highlights from the R code
name %>%
 str_c("+") %>%
 str_split("") %>%
 map(~ purrr::accumulate(.x,c))

Accumulate from purr is
an easy way to unroll the

names

text_matrix <-
 subsequence_data %>%
 map(~ char_lookup$id[match(.x,char_lookup$char)]) %>%
 pad_sequences(maxlen = max_length+1) %>%
 to_categorical(num_classes = num_chars)

Keras has built in
functions for padding,
one-hot encoding, etc

Once we’ve formatted the data,
make the neural network!

Dense
All inputs are fed into

each regression

LSTM
Each input fed into one

set of outputs, along
with previous output

Dropout
Remove random
values to avoid

overfitting

Activation
Apply a function
across the values

(sometimes built into
layers)

f(x)

Convolution
Model adjacent
points together

Global Pooling
Average values

together

Some network layers

Our network
● Input data

● LSTM – figure out the patterns

● LSTM – figure out more patterns

● Dropout – don’t overfit buddy 😒
● Dense – to get one output for each letter

● Activation – make sure scores add up to one

The code
input <- layer_input(shape = c(max_length,num_characters))

output <-

 input %>%

 layer_lstm(units = 32, return_sequences = TRUE) %>%

 layer_lstm(units = 32, return_sequences = FALSE) %>%

 layer_dropout(rate = 0.2) %>%

 layer_dense(num_characters) %>%

 layer_activation("softmax")

model <- keras_model(inputs = input, outputs = output) %>%

 compile(

 loss = 'binary_crossentropy',

 optimizer = "adam"

)

Set the input shape
based on data

Define the network
(each layer is a line of code!)

Choose how to optimize it
Choose loss based on output variable
Setting optimizer to “adam” usually fine

Train the neural network!

● Choices:
○ Epochs - How many times to we want to fit data?

○ Batch Size - How many rows of data do we want to fit at
once?

● Answers:
○ # epochs – Until it seems like it converges

○ Batch size – (we’ll come back to this one)

fit_results <-
 model %>%
 fit(
 x_name,
 y_name,
 epochs = 25,
 batch_size = 64
)

Input X

Target y

This might take a while…

You’re done! Save your work!

save_model_hdf5(model,"model.h5")

Notes:
● You can’t use standard RDS objects since the networks are python-y
● The network only works for predicting new inputs of the same size
● Loading can be fussy between different versions of TensorFlow or

hardware

How to use the model?
● Like everything else in R, use predict: predict(model,previous_letters_data)

● For input letters, returns the probability of each letter being next

● Define a function that:
○ Starts with a blank string
○ Predicts the next letter & updates
○ Predicts the next letter & updates (Keep going!)
○ Stop character! Stop!!!

Then it’s fun time!
Hanta Cheoper Precy Sowel Northuba

Hash Skarma Chica Buck Kina Pozella Wharper

Dishon Schunk Booro Eatha Cobme
Nandre Inmles Gared Armie Ruwiaodle Sawie

Togar Spok Leaule Alge Shola Mitty Shella Freyna Leesa Mutch Skio

Baice Kentel Rooce Tiamet Mog Drolas Toli Kingy Rarger Mitcha

Aingo Sabson Feliga
Sunpery Losto Sambie Jori Hark Leeli Sudley Choose Vig

Dallie Kand Tetsie Batley Ruttie Pomo Devin Inabelle Spalat Lura
Dia Sorchie Otan Rocey Siry Pabk Blaod Ase Kamon Move

Phalmop Choop Ruccel Kenasel Chima Makey Linkie Tugel Koglot Miron

Estoh Mody Channilo Dernie Brandel Timuse Pita Amming Sammmy Kittred Mirhi

Poni Them Biaf Tin Cheet Booby Lule Maycey Isanna Maggo
Cimisi Aca Timtle Wintan Arth Leus Minson Boli Castila Proca

Live Code Time!

Switching to a GPU

Why do we care about GPUs?
● GPUs can do tiny parallel computations very

efficiently
○ Neural network fittings are tiny computations

● Large datasets and large neural networks have
huge speed boosts
○ Small neural networks or little data does not

● On a GPU with a large batch size you can train
much faster than a CPU
○ Multiple GPUs are even better

Only useful if your problem is right for it!

Beware the flashy hype

The good news

+0 -0
Switching to running on a GPU requires zero lines of R
code change

The bad news
Usings GPUs with TensorFlow in R requires a few repeated steps

INSTALL CUDA
AND CUDNN

NVIDIA libraries required for
deep learning on a GPU

Different versions have
different dependencies

INSTALL PYTHON
TENSORFLOW

Each TensorFlow version is
only compatible with certain
versions of CUDA and
depends on pip/conda

INSTALL R
TENSORFLOW

Mostly compatible with
different versions of Python
TensorFlow

TEST YOUR SETUP

Try running your code and
seeing if the GPU is
successfully utilized

BUY A GRAPHICS
CARD

The good news - utilize the help of others

rocker-project.org - R docker images for many
situations (including GPU usage)!

saturn-rstudio-tensorflow - Saturn Cloud
image based on rocker/ml with TensorFlow installed
and working

http://rocker-project.org
https://hub.docker.com/r/rocker/ml

Getting the benefits of GPUs

fit_results <-
 model %>%
 fit(
 x_name,
 y_name,
 epochs = 25,
 batch_size = 64
)

fit_results <-
 model %>%
 fit(
 x_name,
 y_name,
 epochs = 500,
 batch_size = 32768
)

CPU GPU

● To get the GPU speed benefit you need a large batch size
● Large batch size = less learned per epoch (so need more)
● Only useful for large models!
● See saturncloud.io/blog/dask-with-gpus for more details

https://saturncloud.io/blog/dask-with-gpus/

Let’s try it

Wrapping it up

● Neural networks in R are not hard!

● Can be treated like a super-duper linear regression

● No R code change to use a GPU, but potentially
lots of work to get packages set up

● Run this example on a GPU right now:
scld.io/ex/r-tensorflow

● Just see the code:
scld.io/docs/r-tensorflow

https://scld.io/ex/r-tensorflow
http://scld.io/docs/r-tensorflow

Thank you!
Jacqueline Nolis @skyetetra

Upcoming events

